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A DISCUSSION AND COMPARISON OF 
NUMERICAL TECHNIQUES USED TO SOLVE 

THE NAVIER-STOKES AND EULER EQUATIONS 
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SUMMARY 

This paper is intended to provide some background to a number of widely used methods for solving the 
Navier-Stokes and Euler equations. The difference between coupled and uncoupled iterative schemes is 
discussed together with methods for solving the equations. Methods covered include time marching (both 
explicit and implicit), pressure correction and a Newton-Raphson technique. The relationship between the 
methods is illustrated. 

1. INTRODUCTION 

The Navier-Stokes and Euler equations are highly non-linear and in order to solve them with 
existing numerical techniques we must first linearize the equations. It is the form of this 
linearization which determines the form of the numerical technique that is subsequently used. . In Section 3 a number of different linearizations are discussed which give rise to coupled or 
uncoupled systems of discrete equations. With an uncoupled system the equations may be solved 
sequentially but with a coupled system the equations must be solved simultaneously. 

Three methods of solution of the uncoupled equations are outlined in Section 4. These methods 
are implicit and explicit time marching and a pressure correction procedure. A stability analysis 
is also performed on a model equation. 

The solution of the coupled equations is described in Section 5. The methods described are 
implicit time marching and a Newton-Raphson procedure. 

It is now apparent that there are a wide variety of methods available for solving the same 
governing equations. The question of which method is optimal is discussed in Section 6. 

2. GOVERNING EQUATIONS 

The two-dimensional unsteady continuity, Navier-Stokes and energy equations may be written 
in strong conservation form as 
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where 

and the flux vectors F, G,  R and S are given by 

and 

In (5 )  and (6) 

and 

au av 
z,, = (A + 2p)- + A-, ax ay  

au au 
7 y y  = (A + 2p) - + ;1 -, a y  ax  

aT 
R4 = UT,. + V Z , ~  + k - ax 

aT 
S4 = UT,,, + uzyy + k -, 

aY 
where k is the thermal diffusivity. 

For a perfect gas the pressure p is given by the equation of state 

P = (Y - 1)Ce - t (pu2 + pu2)1, 
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where y is the ratio of specific heats and the static temperature T is given by 

T = Ce - (PU2 + P02)/21/(Pc") .  (13) 

Only laminar flow will be considered, but the numerical schemes developed in this paper may 
be applied to turbulent flow. 

3. COUPLED AND UNCOUPLED SYSTEMS OF EQUATIONS 

In order to solve the equations described in the previous section we must first linearize them. 
It is the form of this linearization which determines the numerical technique that is subsequently 
used. The linearization scheme of Beam and Warming' will be described in this section, and it 
is shown how this scheme gives rise to a set of coupled implicit equations. It is then demonstrated 
that using alternative linearizations the equations may be uncoupled and the resulting sets of 
equations solved by explicit or implicit techniques. 

A generalized time differencing formula may be defined as' 

e A t  a At a E 
4" = 1+Ez ( Aq") + - i + E a t  - (q") + -Aq"-' 1 + E  + [ o [ ( e - ~ - * ) A t ~ + A t ~ ] ,  (14) 

where 
Aq" = q"+ ' - 9". (15)  

The differencing in (14) is equivalent to many common schemes. The parameters 8 and E determine 
the type of scheme and its accuracy. For example 8 = 1, E = 0 reduces (14) to the common Euler 
implicit formula. 

(16) 
a 
at 

q"+' - q" = At-(@+') + O(At2). 

Substituting (1) into (14) gives 

1 a 
a Y  

- AR") + - (AG" - AS") 

(17) 

neglecting the temporal truncation error. If we now define the Jacobian matrices 
J,, J,, JR and J, as 

aF J --, 
F -  aq 

a R  
JR=' l i ; ;  

and 

as 
s - a q  

J --, 
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which are of order 4 and easily evaluated from (2)-(6), these definitions imply 

A F  = J, Aq, 
AG = J, Aq, 
AR = J, Aq 

and 
AS = J, Aq, 

Equations (22)-(25) may be used in (17) to obtain 

The equations have been linearized in this step by evaluation of the Jacobian matrices at time 
level n. When (26) is integrated over suitable control volumes using central differences Aq now 
represents a vector containing values of the variables at all the discrete points in the domain. 
(26) may now be written in matrix form as 

AtE" E A" Aq" = ~ +-Aq"+', 
l + &  1 + &  

where E is a vector containing the flux balance residuals over each of the control volumes. 
It is the ordering of Aq which determines the form of A. Usually this vector is ordered as follows: 

I lq= 

where 

k is the number of grid points and 1 < 1 < k. A is then a block penta-diagonal matrix (each block 
of order 4) and may be factorized into two block tri-diagonal matrices and inverted using AD1 
techniques. This factorization is performed without reduction in the order of the temporal or 
spatial truncation error. 1-4 

To illustrate the coupling between the equations we may adopt an alternative ordering of Aq, 
thus: 
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The coefficient matrix A then takes the following form: 

Each of the submatrices in A is penta-diagonal and of order k. It can now be clearly seen that 
(31) represents a coupled system of equations, i.e. we cannot solve for Ap, Apu, Apv and Ae 
individually but require to invert A. 

If submatrices in A are neglected so that A becomes block lower triangular, i.e. 

/ I  0 0 o \  
x, I + X ,  0 
Y, Y, I + Y ,  

then the equations become partially uncoupled. We may now solve the equations sequentially 
and only require to invert a submatrix for each equation. We are also free to choose the order 
in which the equations are solved so long as the block triangular nature of A is maintained. 

Inverting A in these various forms corresponds to alternative linearizations to that defined 
by (31) which can only affect the time accuracy, stability and rate of convergence of the scheme; 
the steady-state solution remains unchanged. 

It is possible to go one stage further and fully uncouple the equations by adopting an alternative 
linearization such that A becomes block diagonal, i.e. 

Again this linearization cannot affect the steady-state solution. The equations may now be solved 
in any order. 

With the partially and fully uncoupled systems we also have the choice of how to calculate 
the coefficient matrices. We could use the most up to date value of each variable or use all 
variables at  the previous time level. These alternative schemes correspond to different lineari- 
zations which do not affect the steady-state solution. 

4. METHODS OF SOLVING THE UNCOUPLED EQUATIONS 

4.1.  Uncoupled implicit time marching 

This method corresponds to the inversion of (32) or (33). The solution of the individual 
equations could be achieved by the use of an A.D.I. method. To the authors' knowledge there 
are no reports on the use of this method in the literature. 

4.2.  Pressure correction methods 

These method@ solve the uncoupled steady-state equations using primitive variables. The 
continuity equation is expressed in terms of pressure as opposed to density. An A.D.I. method 
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is then employed to solve the uncoupled equations sequentially. These methods bear an obvious 
resemblance to the uncoupled implicit time marching method described in Section 4.1. It has 
been shown by Connell' that the SIMPLE procedure of Caretto rt is equivalent to solving the 
unsteady momentum equations with a spatially varying time step. 

4.3. Explicit time marching 

Explicit time marching may be applied in a form which corresponds to a further simplification 
of A in (33), reducing it to the identity matrix. 

In this form the scheme is similar to that of Denton' and may be recognized as one iteration 
of a point Jacobi procedure. An alternative scheme may be proposed where the most up to date 
values of the variables are used as we sweep through the matrix. A then becomes lower triangular 
and the scheme corresponds to one Gauss-Siedel iteration. 

There are a number of other explicit schemes which are the multi-step in n a t ~ r e . ~ . ' ~  

4.4. Stability restrictions 

A general linearized analysis for the implicit methods described previously indicates that they 
are unconditionally stable. However in reality, owing to the non-linearities and the method of 
applying the boundary conditions, there will be some limit on the forward time step. 

In order for an explicit scheme to be stable a limit has to be put on the forward time step 
At. An approximation to this limit can be obtained by analysing the stability of simple model 
problems. For example consider the linearized Burgers' equation: 

au au a Z u  

at ax ax -+ a - -  v 2 =  0, (34) 

where a is the speed of sound and v = p/p (both assumed constant). The discrete approximation 
to (34) for an internal control volume using central differences for the space terms may be written 
as 

A t v  a At 
A x  2 A x  u;+ = u; + 7(u; - 2u; + UE) + -(UE - u;). (35) 

In order to establish a stability criterion we neglect any effect the boundary conditions may 
have and look for a solution to (35) of the form 

(36) un - eanAt ipx 
p -  e 3 

giving 

which may be expressed as 

eaA'= 1 4v At - ~ s i n 2 ( p A x / 2 ) + - - - i i i n ( / l A . ~ )  a At 
Ax2 Ax 

For stability we require leaA'l d 1 ,  which leads to 

s inz(~Ax/2)+a2cos2(~Ax/2)  (39) 
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If v << a Ax then 
At 6 2v/a2, 

which is very restrictive. 

above, we find that if 
If upwind differencing is used on the aau/ax term then, by a similar method to that used 

(41) 
then the scheme is stable. This condition is much less restrictive than (40) at the expense of a 
larger spatial truncation error. If the fluid under consideration is compressible and inviscid, then 
the stability criterion may be derived by considering the one-dimensional momentum and 
continuity equations under the assumption of constant entropy. Richardson' performs the 
analysis and derives the well known Courant-Friedricks-Lewy (CFL) condition of 

At < l/(a/Ax + 2v/Ax2), 

At 6 Ax/(u f ( I ) ,  (42) 
where the first derivatives have been upwind differenced. This condition is also derived by 
MacCormackg where the equations of momentum, continuity and energy are considerd. 

To extend the analysis of Richardson and MacCormack to include the effects of viscosity is 
complicated. However if the viscous effects are small enough for the assumption of constant 
entropy to be valid an extension of Richardson's analysis can be shown to give 

At < 1/[(u f a)/Ax + v/Ax2], (43) 
indicating that the viscous effects tend to reduce the maximum permissible time step. 

5. METHODS O F  SOLUTION O F  THE COUPLED EQUATIONS 

In addition to the implicit time marching procedure described in Section 3 a Newton-Raphson 
procedure may be used to solve the coupled equations. It is this technique and its relationship 
to implicit time marching that will be described in this section. With this approach the time 
derivatives are omitted from the governing equations and we solve (iteratively) for the steady-state 
solution.12 As with the implicit time marching method described in Section 2 the steady-state 
governing equations may be expressed as 

(44) -+--- +-, 
where q, F, G, R and S are defined by (2)-(6). It is assumed that we have an approximate solution 
q" to (44), where n refers to iteration number. To q" we add Aq" such that we have a better 
approximation to the solution, i.e. 

aF(q) WQ) - aR(q) a m )  
ax ay ax ay 

aF(qn + Aq") + aG(q" + Aq") aR(q" + Aq") S(q" + Aq") + - - 
ax a Y  ax dY 

Adopting a Taylor expansion with some rearrangement gives 

a a a a 
ax a Y  ax a Y  
-{ (Ji - J",Aq"} + -{ (Jg - Jg)Aq"} = -(F" - R") + -(Cn - S"), 

(45) 

where terms of order (Aq)' have been neglected and J,, J,, J, and J, are the Jacobian matrices 
defined in ( 1  8)-(21). 
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Equation (46) is now discretized in a suitable manner and solved for Aq". At convergence the 
R.H.S. of (46) will be zero, and hence Aq will be zero. 

The solution of the discrete approximation to (46) can be achieved by use of a direct or 
iterative method. Baldwin' uses a preconditioned bi-conjugate gradient method. 

The Newton-Raphson scheme bears an obvious resemblance to the coupled implicit time 
marching method described in Section 3. It will be seen that (46) is identical to (26) with E = 0 and 
0 = 1 (the Euler implicit time discretization) and At + cx). 

The stability of coupled systems is extremely difficult to analyse. However, the conclusions 
drawn in Section 4.4 are applicable. One may expect that owing to the linearization and con- 
sequent strong coupling between the equations, the coupled methods described above will be faster 
to converge and more robust than uncoupled systems. 

6. SUMMARY AND DISCUSSION 

Linearization techniques for the iterative solution of the Navier-Stokes equations have been 
discussed that give rise to coupled or uncoupled systems of equations. 

For the uncoupled systems of equations two solution algorithms have been described, time 
marching and pressure correction. The time marching method may be subdivided into implicit and 
explicit time marching. Both these methods solve the governing equations for a transient-like 
solution and obtain the steady-state solution after a sufficient number of time steps. 

With a pressure correction method the time terms are omitted and the steady equations are 
solved iteratively. However this method is similar to uncoupled implicit time marching. 

For the coupled systems of equations two possible methods are described, implicit time 
marching and a Newton-Raphson procedure. Both methods require the inversion of large 
matrices of coefficients. With the time marching method this is achieved by the use of an efficient 
block AD1 procedure. With the Newton-Raphson method a direct or iterative method could be 
used. The similarity between implicit time marching and the Newton-Raphson method is also 
demonstrated. 

The obvious question which arises from this summary is 'is it best to use an implicit or explicit 
method? There is no easy answer to this question. However if we are interested in minimizing the 
CPU time to obtain the steady-state solution to a given problem, then it can be seen that although an 
explicit method is cheap in terms of CPU time per time step, there is a restriction on the forward 
time step. Hence the method may take many time steps to reach the steady-state solution. In 
contrast, with implicit methods a larger time step may be used and fewer time steps will be required 
to reach a converged solution. However implicit methods use more CPU time per time step. It can 
therefore be seen that there may be some balance in terms of overall CPU time (to reach the steady- 
state solution) between implicit and explicit methods. One advantage of fully coupled systems is 
that they may suffer less from convergence and stability problems associated with an uncoupled 
system. It is unlikely that much can be done analytically and the question of which procedure is 
more efficient will only be answered with numerical experimentation. 
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